You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

346 lines
11 KiB

#define MICHLIB_NOSOURCE
#include "layereddata.h"
MString LayeredData::Info() const
{
if(!isOk()) return "";
MString d;
for(size_t i = 0; i < NDepths(); i++) d += MString(" ") + "(" + i + " " + Depth(i) + ")";
std::set<MString> vars;
for(const auto& f: nc) GetVars(f.Get(), vars);
MString svars;
{
bool first = true;
for(const auto& v: vars)
{
svars += (first ? "" : ", ") + v;
first = false;
}
}
// clang-format off
return
"Dataset: " + Title() + "\n" +
" Begin date: " + Time(0).ToString() + "\n" +
" End date: " + Time(NTimes()-1).ToString() + "\n" +
" Time step: " + Timestep() + " seconds\n" +
" Time moments: " + NTimes() + "\n" +
" Region: (" + lonb + " : " + lone + ") x (" + latb + " : " + late + ")\n" +
" Grid: " + dname.nx + "x" + dname.ny + " (" + lonstep + " x " + latstep + ")\n" +
" Depths:" + d + "\n" +
" Supported variables: " + svars;
// clang-format on
}
MString LayeredData::Open(const MString& dataset)
{
nc.clear();
MString proxyurl = GPL.ParameterSValue("USEPROXY", "");
if(proxyurl.Exist()) proxy.Activate("all_proxy", proxyurl);
nc.clear();
size_t i = 1;
while(true)
{
MString url = GPL.ParameterSValue(dataset + "_URL" + i, "");
if(url.Exist())
{
//michlib::message("Open "+url);
nc.emplace_back(std::move(url));
if(!nc.back())
{
nc.clear();
return "Can't connect to url " + url;
}
}
else
break;
i++;
}
if(nc.size() == 0) return "No urls for dataset " + dataset + " specified in config";
dname = GetDNames(nc[0].Get());
if(!(dname.lonname.Exist() && dname.latname.Exist()))
{
nc.clear();
return "Can't find longitude/latitude";
}
if(!dname.timename.Exist())
{
nc.clear();
return "Can't find time";
}
auto cn = GetCNames(nc[0].Get());
// Read times
for(auto& f: nc)
{
MString ret = f.ReadTimes(cn.timename);
if(ret.Exist())
{
nc.clear();
return ret;
}
times.insert(times.end(), f.Times().begin(), f.Times().end());
}
std::sort(times.begin(), times.end());
auto last = std::unique(times.begin(), times.end());
times.erase(last, times.end());
if(cn.depthname.Exist())
{
auto rdepths = nc[0]->VR(cn.depthname);
if(!rdepths)
{
nc.clear();
return "Can't read depths";
}
depths.resize(rdepths.DimLen(0));
for(size_t i = 0; i < depths.size(); i++) depths[i] = rdepths(i);
}
else // Surface only data
{
depths.resize(1);
depths[0] = 0;
}
auto lons = nc[0]->VR(cn.lonname);
auto lats = nc[0]->VR(cn.latname);
if(!(lons && lats))
{
nc.clear();
return "Can't get longitudes/latitudes";
}
lonb = lons(0);
latb = lats(0);
lone = lons(dname.nx - 1);
late = lats(dname.ny - 1);
lonstep = (lone - lonb) / (dname.nx - 1);
latstep = (late - latb) / (dname.ny - 1);
return "";
}
std::pair<const BaseParameters*, MString> LayeredData::Parameters(michlib_internal::ParameterListEx& pars, const CLArgs& args) const
{
std::unique_ptr<struct Parameters> ppar{new struct Parameters};
ppar->layer = args.contains("layer") ? args.at("layer").ToInteger<size_t>() : 0;
if(!args.contains("depth") && ppar->layer >= NDepths()) return {nullptr, MString("Layer ") + ppar->layer + " is too deep!"};
real depth = args.contains("depth") ? args.at("depth").ToReal() : Depth(ppar->layer);
if(!(args.contains("lonb") && args.contains("lone") && args.contains("latb") && args.contains("late"))) return {nullptr, "Region not specified (lonb, lone, latb, late)"};
{
auto dom = DetGeoDomain(lonb, lone);
real lon1 = ToGeoDomain(args.at("lonb").ToReal(), dom);
real lon2 = ToGeoDomain(args.at("lone").ToReal(), dom);
real lat1 = args.at("latb").ToReal();
real lat2 = args.at("late").ToReal();
// Special case when the longitude lies in a small sector between the end and the start
if(lon1 < lonb) lon1 = lone;
if(lon2 > lone) lon2 = lonb;
ppar->yb = static_cast<size_t>(Floor((lat1 - latb) / latstep));
ppar->ye = static_cast<size_t>(Ceil((lat2 - latb) / latstep));
if(ppar->ye > dname.ny - 1) ppar->ye = dname.ny - 1;
if(ppar->yb >= ppar->ye) return {nullptr, "Latb must be lesser then late"};
ppar->xb = static_cast<size_t>(Floor((lon1 - lonb) / lonstep));
ppar->xe = static_cast<size_t>(Ceil((lon2 - lonb) / lonstep));
if(ppar->xb == ppar->xe) return {nullptr, "Lonb must be not equal late"};
if(depth < 0.0 || depth > depths.back())
ppar->layer = (depth < 0.0) ? 0 : (depths.size() - 1);
else
for(size_t i = 0; i < depths.size() - 1; i++)
{
if(depth >= depths[i] && depth <= depths[i + 1])
{
ppar->layer = (depth - depths[i] <= depths[i + 1] - depth) ? i : (i + 1);
break;
}
}
}
pars.SetParameter("depth", Depth(ppar->layer));
pars.SetParameter("layer", ppar->layer);
pars.SetParameter("dataset", Title());
pars.SetParameter("lonb", Lon(ppar->xb));
pars.SetParameter("latb", Lat(ppar->yb));
pars.SetParameter("lone", Lon(ppar->xe));
pars.SetParameter("late", Lat(ppar->ye));
return {ppar.release(), ""};
}
LayeredData::Data LayeredData::Read(const MString& vname, const BaseParameters* ip, size_t i) const
{
if(!isOk()) return Data();
bool nodepth = false;
auto p = dynamic_cast<const struct Parameters*>(ip);
auto [name, id, tid] = VarNameLoc(vname, times[i]);
if(!name.Exist()) // Conversion read
{
// ptemp from temp and sal
if(vname == "ptemp")
{
auto temp = Read("temp", ip, i);
auto sal = Read("sal", ip, i);
if(!(temp && sal)) return Data();
auto out = temp;
for(size_t ind = 0; ind < out.N(); ind++)
{
if(temp.IsFill(ind) || sal.IsFill(ind))
out.V(ind) = out.Fillval();
else
out.V(ind) = Temp2PTemp(temp.V(ind), sal.V(ind), Depth(p->layer), out.Lon(ind), out.Lat(ind));
}
return out;
}
// temp from ptemp and sal
if(vname == "temp")
{
auto temp = Read("ptemp", ip, i);
auto sal = Read("sal", ip, i);
if(!(temp && sal)) return Data();
auto out = temp;
for(size_t ind = 0; ind < out.N(); ind++)
{
if(temp.IsFill(ind) || sal.IsFill(ind))
out.V(ind) = out.Fillval();
else
out.V(ind) = PTemp2Temp(temp.V(ind), sal.V(ind), Depth(p->layer), out.Lon(ind), out.Lat(ind));
}
return out;
}
// pdens from temp and sal
if(vname == "pdens")
{
bool tempispot = HaveVar("ptemp");
auto temp = Read(tempispot ? "ptemp" : "temp", ip, i);
auto sal = Read("sal", ip, i);
if(!(temp && sal)) return Data();
auto out = temp;
for(size_t ind = 0; ind < out.N(); ind++)
{
if(temp.IsFill(ind) || sal.IsFill(ind))
out.V(ind) = out.Fillval();
else
out.V(ind) = tempispot ? PTemp2PDens(temp.V(ind), sal.V(ind), Depth(p->layer), out.Lon(ind), out.Lat(ind))
: Temp2PDens(temp.V(ind), sal.V(ind), Depth(p->layer), out.Lon(ind), out.Lat(ind));
}
return out;
}
// U and U2 from u and v
if(vname == "U" || vname == "U2")
{
bool square = vname == "U2";
auto u = Read("u", ip, i);
auto v = Read("v", ip, i);
if(!(u && v)) return Data();
auto out = u;
for(size_t ind = 0; ind < out.N(); ind++)
{
if(u.IsFill(ind) || v.IsFill(ind))
out.V(ind) = out.Fillval();
else
out.V(ind) = square ? (u(ind) * u(ind) + v(ind) * v(ind)) : michlib::Hypot(u(ind), v(ind));
}
return out;
}
return Data();
}
// Direct read
auto head = nc[id]->Header();
for(const auto& v: head.Variables())
if(v.Name() == name)
{
if(v.Dimensions().size() == 3) nodepth = true;
if(v.Type().Id() == NC_SHORT) return ReadVarRaw<int2>(nc[id], name, tid, nodepth, p);
if(v.Type().Id() == NC_INT) return ReadVarRaw<int>(nc[id], name, tid, nodepth, p);
if(v.Type().Id() == NC_FLOAT) return ReadVarRaw<float>(nc[id], name, tid, nodepth, p);
if(v.Type().Id() == NC_DOUBLE) return ReadVarRaw<double>(nc[id], name, tid, nodepth, p);
}
return Data();
}
template<class DataType> LayeredData::Data LayeredData::ReadVarRaw(const NC& f, const MString& name, size_t i, bool nodepth, const struct LayeredData::Parameters* p) const
{
real unitmul = 1.0;
DataType fill;
real offset = 0.0, scale = 1.0;
{
auto a_fill = f->A<DataType>(name, "_FillValue");
auto a_offset_d = f->A<double>(name, "add_offset");
auto a_scale_d = f->A<double>(name, "scale_factor");
auto a_offset_f = f->A<float>(name, "add_offset");
auto a_scale_f = f->A<float>(name, "scale_factor");
if(a_fill)
fill = a_fill;
else
{
if constexpr(std::is_floating_point_v<DataType>)
fill = NAN;
else
fill = -1;
}
if(a_offset_d) offset = a_offset_d;
if(a_scale_d) scale = a_scale_d;
if(a_offset_f) offset = a_offset_f;
if(a_scale_f) scale = a_scale_f;
}
auto unit = f->A<MString>(name, "units");
if(unit && (unit.Get() == "m s-1" || unit.Get() == "m/s")) unitmul = 100.0;
Data data((p->xb < p->xe) ? (p->xe - p->xb + 1) : (dname.nx + p->xe - p->xb + 1), p->ye - p->yb + 1, Lon(p->xb), Lat(p->yb), lonstep, latstep);
if(p->xb < p->xe)
{
auto var =
nodepth ? f->V<DataType>(name, {dname.lonname, p->xb, p->xe - p->xb + 1}, {dname.latname, p->yb, p->ye - p->yb + 1}, {dname.timename, i, 1})
: f->V<DataType>(name, {dname.lonname, p->xb, p->xe - p->xb + 1}, {dname.latname, p->yb, p->ye - p->yb + 1}, {dname.timename, i, 1}, {dname.depthname, p->layer, 1});
if(!var) return Data();
if(var.DimLen(0) != data.Nx() || var.DimLen(1) != data.Ny()) return Data();
for(size_t ix = 0; ix < var.DimLen(0); ix++)
for(size_t iy = 0; iy < var.DimLen(1); iy++)
{
DataType v = var(ix, iy);
data(ix, iy) = (v == fill || isnan(v)) ? Data::Fillval() : ((v * scale + offset) * unitmul);
}
}
else
{
auto var1 = nodepth ? f->V<DataType>(name, {dname.lonname, p->xb}, {dname.latname, p->yb, p->ye - p->yb + 1}, {dname.timename, i, 1})
: f->V<DataType>(name, {dname.lonname, p->xb}, {dname.latname, p->yb, p->ye - p->yb + 1}, {dname.timename, i, 1}, {dname.depthname, p->layer, 1});
auto var2 = nodepth ? f->V<DataType>(name, {dname.lonname, 0, p->xe + 1}, {dname.latname, p->yb, p->ye - p->yb + 1}, {dname.timename, i, 1})
: f->V<DataType>(name, {dname.lonname, 0, p->xe + 1}, {dname.latname, p->yb, p->ye - p->yb + 1}, {dname.timename, i, 1}, {dname.depthname, p->layer, 1});
if(!(var1 && var2)) return Data();
if((var1.DimLen(0) + var2.DimLen(0)) != data.Nx() || var1.DimLen(1) != data.Ny() || var2.DimLen(1) != data.Ny()) return Data();
for(size_t ix = 0; ix < var1.DimLen(0); ix++)
for(size_t iy = 0; iy < var1.DimLen(1); iy++)
{
DataType v = var1(ix, iy);
data(ix, iy) = (v == fill || isnan(v)) ? Data::Fillval() : ((v * scale + offset) * unitmul);
}
for(size_t ix = 0; ix < var2.DimLen(0); ix++)
for(size_t iy = 0; iy < var2.DimLen(1); iy++)
{
DataType v = var2(ix, iy);
data(ix + var1.DimLen(0), iy) = (v == fill || isnan(v)) ? Data::Fillval() : ((v * scale + offset) * unitmul);
}
}
return data;
}