#pragma once #include "geohelpers.h" #include "traits.h" #include using michlib::M_PI; using michlib::real; using michlib::Sqrt; enum class Metric { EUCLID, SPHERIC }; class UVDataStorage { protected: static constexpr real fillval = 1.0e10; std::vector u, v, u2; size_t nx = 0, ny = 0; Metric metric; MString unit; UVDataStorage() = default; real D(real lon1, real lat1, real lon2, real lat2) const { switch(metric) { case(Metric::EUCLID): return michlib::Hypot(lon2 - lon1, lat2 - lat1); // Spheric distance in km case(Metric::SPHERIC): return michlib::GCD(lon1 * M_PI / 180.0, lat1 * M_PI / 180.0, lon2 * M_PI / 180.0, lat2 * M_PI / 180.0) * 6371.0; } return 0.0; } // For derivatives real Ud(size_t ix, size_t iy) const { return IsCoast(ix, iy) ? 0.0 : U(ix, iy); } real Vd(size_t ix, size_t iy) const { return IsCoast(ix, iy) ? 0.0 : V(ix, iy); } void SetUnit(const MString& str) { unit = str; } public: enum STPOINT { SADDLE = 0, SACICFOCUS, SKNOT, UACICFOCUS, UKNOT, SCICFOCUS, UCICFOCUS, NOPOINT }; struct StPoint { real x = 0.0, y = 0.0; STPOINT type = NOPOINT; }; const real& U(size_t i) const { return u[i]; } const real& V(size_t i) const { return v[i]; } const real& U(size_t ix, size_t iy) const { return U(iy * nx + ix); } const real& V(size_t ix, size_t iy) const { return V(iy * nx + ix); } real& U(size_t i) { return u[i]; } real& V(size_t i) { return v[i]; } real& U(size_t ix, size_t iy) { return U(iy * nx + ix); } real& V(size_t ix, size_t iy) { return V(iy * nx + ix); } const real& U2(size_t i) const { return u2[i]; } const real& U2(size_t ix, size_t iy) const { return U2(iy * nx + ix); } real& U2(size_t i) { return u2[i]; } real& U2(size_t ix, size_t iy) { return U2(iy * nx + ix); } size_t N() const { return u.size(); } size_t Nx() const { return nx; } size_t Ny() const { return ny; } explicit operator bool() const { return N() != 0; } bool IsCoast(size_t i) const { return U(i) == fillval || V(i) == fillval; } bool IsCoast(size_t ix, size_t iy) const { return U(ix, iy) == fillval || V(ix, iy) == fillval; } bool IsFill(size_t i) const { return IsCoast(i); } bool IsFill(size_t ix, size_t iy) const { return IsCoast(ix, iy); } static real Fillval() { return fillval; } const MString& Unit() const { return unit; } const MString DUnit() const { switch(metric) { case(Metric::EUCLID): return ""; case(Metric::SPHERIC): return "km"; } return ""; } }; template class UVDataDims; template class UVDataDims: public UVDataStorage { real x0 = 0.0, y0 = 0.0; real xstep = 0.0, ystep = 0.0; void Resize(size_t sz) { UVDataStorage::u.resize(sz); UVDataStorage::v.resize(sz); UVDataStorage::u2.resize(sz); } protected: UVDataDims() = default; UVDataDims(const OneVarData& u, const OneVarData& v, Metric m = Metric::SPHERIC) { if(!(u && v)) { *this = UVDataDims(); return; } x0 = u.Lon(0); y0 = u.Lat(0); xstep = u.XStep(); ystep = u.YStep(); metric = m; nx = u.Nx(); ny = u.Ny(); Resize(u.N()); for(size_t i = 0; i < u.N(); i++) { if(u(i) == u.Fillval() || v(i) == v.Fillval()) U(i) = V(i) = U2(i) = Fillval(); else { U(i) = u(i); V(i) = v(i); U2(i) = u(i) * u(i) + v(i) * v(i); } } SetUnit(u.Unit()); } public: real Lon(size_t ix, [[maybe_unused]] size_t iy) const { return x0 + ix * xstep; } real Lat([[maybe_unused]] size_t ix, size_t iy) const { return y0 + iy * ystep; } real Lon(size_t i) const { return Lon(i % nx, i / nx); } real Lat(size_t i) const { return Lat(i % nx, i / nx); } real XStep() const { return xstep; } real YStep() const { return ystep; } real Ix2Lon(size_t ix) const { return x0 + ix * xstep; } real Iy2Lat(size_t iy) const { return y0 + iy * ystep; } }; template class UVDataDims: public UVDataStorage { std::vector lon, lat; void Resize(size_t sz) { UVDataStorage::u.resize(sz); UVDataStorage::v.resize(sz); UVDataStorage::u2.resize(sz); lon.resize(sz); lat.resize(sz); } protected: UVDataDims() = default; UVDataDims(const OneVarData& u, const OneVarData& v, Metric m = Metric::SPHERIC) { if(!(u && v)) { *this = UVDataDims(); return; } metric = m; nx = u.Nx(); ny = u.Ny(); Resize(u.N()); for(size_t i = 0; i < u.N(); i++) { lon[i] = u.Lon(i); lat[i] = u.Lat(i); if(u(i) == u.Fillval() || v(i) == v.Fillval()) U(i) = V(i) = U2(i) = Fillval(); else { U(i) = u(i); V(i) = v(i); U2(i) = u(i) * u(i) + v(i) * v(i); } } } public: real Lon(size_t ix, [[maybe_unused]] size_t iy) const { return Lon(nx * iy + ix); } real Lat([[maybe_unused]] size_t ix, size_t iy) const { return Lat(nx * iy + ix); } real Lon(size_t i) const { return lon[i]; } real Lat(size_t i) const { return lat[i]; } }; template class UVData: public UVDataDims> { using B = UVDataDims>; using B::Ud, B::Vd, B::nx, B::ny, B::D; // For stationary points. Works only for meridian-parallel grids. real LonR(size_t i, size_t j, real x, [[maybe_unused]] real y) const { return B::Lon(i, j) + x * (B::Lon(i + 1, j) - B::Lon(i, j)); } real LatR(size_t i, size_t j, [[maybe_unused]] real x, real y) const { return B::Lat(i, j) + y * (B::Lat(i, j + 1) - B::Lat(i, j)); } real dUdX(size_t ix, size_t iy) const { if(IsCoast(ix, iy)) return Fillval(); if(ix == 0) return (Ud(1, iy) - Ud(0, iy)) / D(Lon(0, iy), Lat(0, iy), Lon(1, iy), Lat(1, iy)); if(ix == nx - 1) return (Ud(nx - 1, iy) - Ud(nx - 2, iy)) / D(Lon(nx - 2, iy), Lat(nx - 2, iy), Lon(nx - 1, iy), Lat(nx - 1, iy)); return 0.5 * ((Ud(ix + 1, iy) - Ud(ix, iy)) / D(Lon(ix, iy), Lat(ix, iy), Lon(ix + 1, iy), Lat(ix + 1, iy)) + (Ud(ix, iy) - Ud(ix - 1, iy)) / D(Lon(ix - 1, iy), Lat(ix - 1, iy), Lon(ix, iy), Lat(ix, iy))); } real dVdX(size_t ix, size_t iy) const { if(IsCoast(ix, iy)) return Fillval(); if(ix == 0) return (Vd(1, iy) - Vd(0, iy)) / D(Lon(0, iy), Lat(0, iy), Lon(1, iy), Lat(1, iy)); if(ix == nx - 1) return (Vd(nx - 1, iy) - Vd(nx - 2, iy)) / D(Lon(nx - 2, iy), Lat(nx - 2, iy), Lon(nx - 1, iy), Lat(nx - 1, iy)); return 0.5 * ((Vd(ix + 1, iy) - Vd(ix, iy)) / D(Lon(ix, iy), Lat(ix, iy), Lon(ix + 1, iy), Lat(ix + 1, iy)) + (Vd(ix, iy) - Vd(ix - 1, iy)) / D(Lon(ix - 1, iy), Lat(ix - 1, iy), Lon(ix, iy), Lat(ix, iy))); } real dUdY(size_t ix, size_t iy) const { if(IsCoast(ix, iy)) return Fillval(); if(iy == 0) return (Ud(ix, 1) - Ud(ix, 0)) / D(Lon(ix, 0), Lat(ix, 0), Lon(ix, 1), Lat(ix, 1)); if(iy == ny - 1) return (Ud(ix, ny - 1) - Ud(ix, ny - 2)) / D(Lon(ix, ny - 2), Lat(ix, ny - 2), Lon(ix, ny - 1), Lat(ix, ny - 1)); return 0.5 * ((Ud(ix, iy + 1) - Ud(ix, iy)) / D(Lon(ix, iy), Lat(ix, iy), Lon(ix, iy + 1), Lat(ix, iy + 1)) + (Ud(ix, iy) - Ud(ix, iy - 1)) / D(Lon(ix, iy - 1), Lat(ix, iy - 1), Lon(ix, iy), Lat(ix, iy))); } real dVdY(size_t ix, size_t iy) const { if(IsCoast(ix, iy)) return Fillval(); if(iy == 0) return (Vd(ix, 1) - Vd(ix, 0)) / D(Lon(ix, 0), Lat(ix, 0), Lon(ix, 1), Lat(ix, 1)); if(iy == ny - 1) return (Vd(ix, ny - 1) - Vd(ix, ny - 2)) / D(Lon(ix, ny - 2), Lat(ix, ny - 2), Lon(ix, ny - 1), Lat(ix, ny - 1)); return 0.5 * ((Vd(ix, iy + 1) - Vd(ix, iy)) / D(Lon(ix, iy), Lat(ix, iy), Lon(ix, iy + 1), Lat(ix, iy + 1)) + (Vd(ix, iy) - Vd(ix, iy - 1)) / D(Lon(ix, iy - 1), Lat(ix, iy - 1), Lon(ix, iy), Lat(ix, iy))); } public: using B::Fillval, B::IsCoast, B::Lon, B::Lat, B::U, B::V, B::Nx, B::Ny; UVData() = default; UVData(const OneVarData& u, const OneVarData& v, Metric m = Metric::SPHERIC): B(u, v, m) {} real Div(size_t i) const { return Div(i % nx, i / B::nx); } real Rot(size_t i) const { return Rot(i % nx, i / B::nx); } real Div(size_t ix, size_t iy) const { if(!*this) return 0.0; real ux = dUdX(ix, iy); real vy = dVdY(ix, iy); return (ux == Fillval() || vy == Fillval()) ? Fillval() : (ux + vy); } real Rot(size_t ix, size_t iy) const { if(!*this) return 0.0; real vx = dVdX(ix, iy); real uy = dUdY(ix, iy); return (vx == Fillval() || uy == Fillval()) ? Fillval() : (vx - uy); } // Okubo-Weiss parameter real OW(size_t i) const { return OW(i % nx, i / nx); } real OW(size_t ix, size_t iy) const { if(!*this) return 0.0; real ux = dUdX(ix, iy); real uy = dUdY(ix, iy); real vx = dVdX(ix, iy); real vy = dVdY(ix, iy); if(ux == Fillval() || uy == Fillval() || vx == Fillval() || vy == Fillval()) return Fillval(); real sn = ux - vy; real ss = vx + uy; real w = vx - uy; return sn * sn + ss * ss - w * w; } auto StablePoints(size_t ix, size_t iy) const { std::vector points; if(!*this) return points; if(ix >= Nx() - 1 || iy >= Ny() - 1) return points; if(IsCoast(ix, iy) || IsCoast(ix + 1, iy) || IsCoast(ix, iy + 1) || IsCoast(ix + 1, iy + 1)) return points; real au = U(ix, iy) - U(ix, iy + 1) - U(ix + 1, iy) + U(ix + 1, iy + 1); real bu = U(ix, iy + 1) - U(ix, iy); real cu = U(ix + 1, iy) - U(ix, iy); real du = U(ix, iy); real av = V(ix, iy) - V(ix, iy + 1) - V(ix + 1, iy) + V(ix + 1, iy + 1); real bv = V(ix, iy + 1) - V(ix, iy); real cv = V(ix + 1, iy) - V(ix, iy); real dv = V(ix, iy); real D = au * bv - av * bu; real a = (au * av * cu - au * au * cv) / D; real b = (au * bv * cu - au * bu * cv + au * av * du - au * au * dv) / D; real c = (au * bv * du - au * bu * dv) / D; real des = b * b - 4.0 * a * c; if(des < 0) return points; des = Sqrt(des); real p = av * cu - au * cv; real q = av * bu - au * bv; real r = av * du - au * dv; real x1 = 0.5 * (-b + des) / a; real x2 = 0.5 * (-b - des) / a; real y1 = -(p * x1 + r) / q; real y2 = -(p * x2 + r) / q; auto PointType = [au = au, av = av, bu = bu, bv = bv, cu = cu, cv = cv](real x, real y) -> auto { real a = 1.0; real b = -y * au - x * av - bv - cu; real c = y * (au * bv - av * bu) + x * (av * cu - au * cv) + bv * cu - bu * cv; real des = b * b - 4.0 * a * c; if(des > 0.0) { if(std::max(-b + Sqrt(des), -b - Sqrt(des)) > 0.0 && c > 0.0) return UVDataStorage::UKNOT; else if(std::max(-b + Sqrt(des), -b - Sqrt(des)) > 0.0) return UVDataStorage::SADDLE; else return UVDataStorage::SKNOT; } else { bool acyclcrit = (av * y + cv > 0.0); if(b < 0.0) return acyclcrit ? UVDataStorage::SACICFOCUS : UVDataStorage::SCICFOCUS; else return acyclcrit ? UVDataStorage::UACICFOCUS : UVDataStorage::UCICFOCUS; } }; if(x1 >= 0.0 && x1 < 1.0 && y1 >= 0.0 && y1 < 1.0) points.emplace_back(LonR(ix, iy, x1, y1), LatR(ix, iy, x1, y1), PointType(x1, y1)); if(x2 >= 0.0 && x2 < 1.0 && y2 >= 0.0 && y2 < 1.0) points.emplace_back(LonR(ix, iy, x2, y2), LatR(ix, iy, x2, y2), PointType(x2, y2)); return points; } };