#ifndef MODGMT_FUNC_H #define MODGMT_FUNC_H #include "modgmt_internals.h" #include "modgmt_objects.h" const ObjectBase* GMT_Header(const ObjectList* input); const ObjectBase* GMT_Footer(const ObjectList* input); const ObjectBase* GMT_ColorGray(const ObjectList* input); const ObjectBase* GMT_ColorRGB(const ObjectList* input); const ObjectBase* GMT_ColorHSV(const ObjectList* input); const ObjectBase* GMT_ColorCMYK(const ObjectList* input); const ObjectBase* GMT_LayerShift(const ObjectList* input); // Extension of OBTypeM template for easy work with lists template class Func, class... O> class Base2Something: public OBTypeM { Base2Something() = delete; Base2Something(Base2Something&&) = delete; Base2Something(Base2Something&) = delete; public: Base2Something(const ObjectBase* arg):OBTypeM(arg) {}; Base2Something(const ObjectList* input, const std::string& name):OBTypeM(input->Find(name)){}; Base2Something(const ObjectList* input, const ObjectList::ListValues::size_type i):OBTypeM((iSize())?input->At(i):0){}; // Check index, because At is not safe template auto operator ()(bool* b, Args... args) const -> decltype(this->OBTypeM::template operator()(b, args...)) { if(!OBTypeM::operator bool()) *b=false; return OBTypeM::operator ()(b,args...); } }; // Generic converting template template class Convert2Struct { public: template Struct operator()(const O* o, bool* suc, Args... args) const { Struct s; if(!s.Convert(o->Value(),args...)) *suc=false; return s; } }; // Extract structure from corresponding class template class Convert2Struct > { public: template Struct operator()(const ObjectGMTClass* o, bool* suc, Args... args) const { return o->Data(); } }; // Converting Int or Real to double template class Convert2Struct { public: double operator ()(const O* q, bool* suc) const {return q->Value();} }; // Converting String to double template<> class Convert2Struct { public: double operator ()(const ObjectString* q, bool* suc) const {double d=0; *suc=(*suc) && str2double(q->Value(),&d); return d;} }; // Converting Int or Real to bool template class Convert2Struct { public: bool operator ()(const O* q, bool* suc) const {return q->Value()!=0;} }; // Converting String to bool template<> class Convert2Struct { public: bool operator ()(const ObjectString* q, bool* suc) const { std::string v=q->Value(); tolower(v); if("y"==v || "yes"==v || "on"==v || "t"==v || "true"==v || "1"==v) return true; if("n"==v || "no"==v || "off"==v || "f"==v || "false"==v || "0"==v) return false; *suc=false; return false; } }; // Get string template<> class Convert2Struct { public: std::string operator ()(const ObjectString* q, bool* suc) const {return q->Value();} }; // This class search parameter with specified names in the list, which may be converted to Struct. // If SearchByType is true, additionaly search unnamed parameter of corresponding Object class (ObjectGMTClass for gmt_struct-derived types, for example). // Additionally, Policies can be used to check correctness of found parameter. template class SearchParameter; template class SearchParameterWDef; // Generic type storage class template class gTypeStorage { template class Convertor: public Convert2Struct {}; // Conversion type public: typedef Base2Something Base2Type; typedef SearchParameter BaseM2Type; typedef SearchParameter BaseMT2Type; typedef SearchParameterWDef BaseMD2Type; typedef SearchParameterWDef BaseMTD2Type; }; // Specific type storage class template class TypeStorage; // Default ObjectList converter template class Convert2Struct { public: template Struct operator()(const ObjectList* o, bool* suc, Args... args) const { Struct s; if(o->Size()!=1) {*suc=false; return s;} typename TypeStorage::Base2Type a(o,0); s=a(suc,args...); return s; } }; // Helper struct for class SearchParameter template // Search function for non-gmt_struct types do nothing struct SearchHelper {void operator()(const ObjectList* input, Struct* s, bool* exist, bool* ok) const {}}; template // Search function for gmt_struct types find ObjectGMTClass in list struct SearchHelper { void operator()(const ObjectList* input, Struct* s, bool* exist, bool* ok) const { for(ObjectList::ListValues::size_type i=0;iSize();i++) { OBType > obj(input->At(i)); if(obj) { if(*exist) {*ok=false; break;} // Object already found *s=obj->Data(); *exist=true; } } } }; // Definition without policies template class SearchParameter { typedef typename TypeStorage::Base2Type Base2Struct; protected: bool exist; // There is at least one parameter with given names bool ok; // True if conversion to corresponding structure was successful and there is only one parameter with given names Struct val; SearchParameter() = delete; SearchParameter(SearchParameter&&) = delete; SearchParameter(SearchParameter&) = delete; public: // Recursive constructor template SearchParameter(const ObjectList* input, const std::string& name, Args... args):SearchParameter(input,args...) { if(ok) { Base2Struct a(input,name); if(exist && a.Exist()) ok=false; else if(a.Exist()) { exist=true; ok=true; val=a(&ok); } } } // Bottom of recursion SearchParameter(const ObjectList* input):exist(false),ok(true) {SearchHelper()(input,&val,&exist,&ok);} // Search by index SearchParameter(const ObjectList* input, const ObjectList::ListValues::size_type i):exist(false),ok(true) { Base2Struct a(input,i); if(a.Exist()) { exist=true; val=a(&ok); } } Struct operator()(bool* suc) const { if(!ok || !exist) *suc=false; return val; } Struct operator()(bool* ex, bool* suc) const { *ex=exist; if(!ok || !exist) *suc=false; return val; } bool Exist() const {return exist;} }; // Definition with policies template class SearchParameter: public SearchParameter { SearchParameter() = delete; SearchParameter(SearchParameter&&) = delete; SearchParameter(SearchParameter&) = delete; public: using SearchParameter::ok; using SearchParameter::exist; // Recursive constructor template SearchParameter(const ObjectList* input, Args... args):SearchParameter(input,args...) {} Struct operator()(bool* suc) const { return Policy()(SearchParameter::operator()(suc),suc); } Struct operator()(bool* ex, bool* suc) const { return Policy()(SearchParameter::operator()(suc),suc); } }; // SearchParameter with default value template class SearchParameterWDef: protected SearchParameter { typedef SearchParameter SP; SearchParameterWDef() = delete; SearchParameterWDef(SearchParameterWDef&&) = delete; SearchParameterWDef(SearchParameterWDef&) = delete; public: template SearchParameterWDef(const ObjectList* input, const Struct& def, Args... args):SP(input,args...) { if(!SP::exist) SP::val=def; SP::exist=true; } Struct operator()(bool* suc) const {return SP::operator()(suc);} Struct operator()(bool* ex, bool* suc) const {return SP::operator()(ex,suc);} bool Exist() const {return true;} }; // SearchParameter with default value setted as class template class SearchParameterWDefO: protected SearchParameter { typedef SearchParameter SP; SearchParameterWDefO() = delete; SearchParameterWDefO(SearchParameterWDefO&&) = delete; SearchParameterWDefO(SearchParameterWDefO&) = delete; public: template SearchParameterWDefO(const ObjectList* input, Args... args):SP(input,args...) { if(!SP::exist) SP::val=DefClass()(); SP::exist=true; } Struct operator()(bool* suc) const {return SP::operator()(suc);} Struct operator()(bool* ex, bool* suc) const {return SP::operator()(ex,suc);} bool Exist() const {return true;} }; // Class for default double value // We use rational representation of floating point number, because double type values not allowed as template parameter template class DoubleDefaultVal { DoubleDefaultVal(DoubleDefaultVal&&) = delete; DoubleDefaultVal(DoubleDefaultVal&) = delete; public: DoubleDefaultVal(){}; double operator()() const {return static_cast(num)/denum;} }; // Definitions for double template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Double; typedef TypeStorage::BaseM2Type BaseM2Double; typedef TypeStorage::BaseMT2Type BaseMT2Double; typedef TypeStorage::BaseMD2Type BaseMD2Double; typedef TypeStorage::BaseMTD2Type BaseMTD2Double; // Definitions for bool template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Bool; typedef TypeStorage::BaseM2Type BaseM2Bool; typedef TypeStorage::BaseMT2Type BaseMT2Bool; typedef TypeStorage::BaseMD2Type BaseMD2Bool; typedef TypeStorage::BaseMTD2Type BaseMTD2Bool; // Definitions for string template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2String; typedef TypeStorage::BaseM2Type BaseM2String; typedef TypeStorage::BaseMT2Type BaseMT2String; typedef TypeStorage::BaseMD2Type BaseMD2String; typedef TypeStorage::BaseMTD2Type BaseMTD2String; // Definitions for ObjectGMTCoord template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Coord; typedef TypeStorage::BaseM2Type BaseM2Coord; typedef TypeStorage::BaseMT2Type BaseMT2Coord; typedef TypeStorage::BaseMD2Type BaseMD2Coord; typedef TypeStorage::BaseMTD2Type BaseMTD2Coord; // Definitions for ObjectGMTRegion template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Region; typedef TypeStorage::BaseM2Type BaseM2Region; typedef TypeStorage::BaseMT2Type BaseMT2Region; typedef TypeStorage::BaseMD2Type BaseMD2Region; typedef TypeStorage::BaseMTD2Type BaseMTD2Region; // Definitions for ObjectGMTProjection template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Projection; typedef TypeStorage::BaseM2Type BaseM2Projection; typedef TypeStorage::BaseMT2Type BaseMT2Projection; typedef TypeStorage::BaseMD2Type BaseMD2Projection; typedef TypeStorage::BaseMTD2Type BaseMTD2Projection; // Definitions for ObjectGMTColor template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Color; typedef TypeStorage::BaseM2Type BaseM2Color; typedef TypeStorage::BaseMT2Type BaseMT2Color; typedef TypeStorage::BaseMD2Type BaseMD2Color; typedef TypeStorage::BaseMTD2Type BaseMTD2Color; // Definitions for ObjectGMTDash template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Dash; typedef TypeStorage::BaseM2Type BaseM2Dash; typedef TypeStorage::BaseMT2Type BaseMT2Dash; typedef TypeStorage::BaseMD2Type BaseMD2Dash; typedef TypeStorage::BaseMTD2Type BaseMTD2Dash; // Definitions for ObjectGMTPen template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Pen; typedef TypeStorage::BaseM2Type BaseM2Pen; typedef TypeStorage::BaseMT2Type BaseMT2Pen; typedef TypeStorage::BaseMD2Type BaseMD2Pen; typedef TypeStorage::BaseMTD2Type BaseMTD2Pen; // Definitions for ObjectGMTFont template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Font; typedef TypeStorage::BaseM2Type BaseM2Font; typedef TypeStorage::BaseMT2Type BaseMT2Font; typedef TypeStorage::BaseMD2Type BaseMD2Font; typedef TypeStorage::BaseMTD2Type BaseMTD2Font; // Definitions for ObjectGMTLayer template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Layer; typedef TypeStorage::BaseM2Type BaseM2Layer; typedef TypeStorage::BaseMT2Type BaseMT2Layer; typedef TypeStorage::BaseMD2Type BaseMD2Layer; typedef TypeStorage::BaseMTD2Type BaseMTD2Layer; // Conversion from List to GMTRegion /* Input: 1) One argument, Region. Return copy of this argument. 2) One argument, case insensitive string "global180" (global domain -R-180/180/-90/90), "global360" (global domain -R0/360/-90/90) or "global" (synonym of "global360"). 3) One argument, list. Recursively calling GMT_Region. 4) Pairs list. Names are xb, xe, yb, ye, and, optionally, type="bbox|nobbox|global180|global360|global". Names are case sensitive, values can be Int, Real, String or GMTCoord. If pair with name region (r) exists in list, when recursively calling GMT_Region on the value of this parameter, when modify it with specified parameters. If argument with type Region exists in list, when copy it and modify with specified parameters. 5) 4 or 5 parameters. Fifth parameter can be "bbox" or "nobbox" (default). If fifth parameter is string "bbox", when first four parameters interprets as xb,yb,xe,ye, else as xb,xe,yb,ye. */ template<> class Convert2Struct { public: struct gmt_region operator()(const ObjectList* input, bool* issuc) const { struct gmt_region r; auto size=input->Size(); bool suc=true; if(1==size) // Cases 1, 2 and 3 { Base2Region region(input,0); r=region(&suc); if(!suc) goto fail; // Conversion failed return r; } // Case 4 { std::string type; bool typeexist=false; { Base2String t(input,"type"); if(t.Exist()) { type=t(&suc); tolower(type); if(!suc) goto fail; // Conversion failed typeexist=true; } else type="nobbox"; } if(r.Convert(type)) return r; // type is one of "global*" string, we can return, becuse upd is irrelevant bool upd; { BaseMT2Region updarg(input,"r","region"); r=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments suc=true; } Base2Coord ixb(input,"xb"), ixe(input,"xe"), iyb(input,"yb"), iye(input,"ye"); if(!(typeexist || ixb.Exist() || ixe.Exist() || iyb.Exist() || iye.Exist() || upd)) goto case5; // No named parameters, no update mode, possibly case 5 struct gmt_coord xb,yb,xe,ye; bool isbbox=upd?(gmt_region::BBOX==r.type):false; if(typeexist) { if("bbox"==type) isbbox=true; if("nobbox"==type) isbbox=false; if("bbox"!=type && "nobbox"!=type) goto fail; // Unknown type } if(upd) { if(!ixb.Exist()) xb=r.xb; if(!ixe.Exist()) xe=r.xe; if(!iyb.Exist()) yb=r.yb; if(!iye.Exist()) ye=r.ye; } else suc=suc && ixb.Exist() && ixe.Exist() && iyb.Exist() && iye.Exist(); // In "new" mode all parameters must exists if(ixb.Exist()) xb=ixb(&suc); if(ixe.Exist()) xe=ixe(&suc); if(iyb.Exist()) yb=iyb(&suc); if(iye.Exist()) ye=iye(&suc); if(!suc) goto fail; // Something wrong if(!r.Convert(xb,xe,yb,ye,isbbox)) goto fail; // Conversion failed return r; // Case 3 with all parameters } case5: // Case 5 if(4==size || 5==size) { bool isbbox=false; if(5==size) { Base2String type(input,4); std::string str=type(&suc); if(!suc) goto fail; // Wrong parameter tolower(str); if("bbox"!=str || "nobbox"!=str) goto fail; // Unknown fifth parameter if("bbox"==str) isbbox=true; } Base2Coord ixb(input,0), ixe(input,(isbbox?2:1)), iyb(input,(isbbox?1:2)), iye(input,3); struct gmt_coord xb=ixb(&suc),yb=iyb(&suc),xe=ixe(&suc),ye=iye(&suc); if(suc) { if(!r.Convert(xb,xe,yb,ye,isbbox)) goto fail; // Conversion failed return r; // Case 4 with all parameters } } fail: *issuc=false; return r; // Something go wrong } }; // Converting List to GMTProjection /* Input: 1) One argument, Projection. Return copy of this argument. 2) One argument, list. Recursively calling GMT_Projection. 3) Pairs list. Names are projtype (type) (string), region (GMTRegion, string or list, which can be converted to GMTRegion), width (or height) in centimeters (may be absent, default width is 10 cm) and projection-dependent parameters. Pair with name region may absent, in this case search in list and using as region object with ObjectGMTRegion type. If pair with name projection (p or proj) exists in list, when recursively calling GMT_Projection on the value of this parameter, when modify it with specified parameters. If argument with type Projection exists in list, when copy it and modify with specified parameters. 4) 3 or more parameters. First parameter is projection type (string), second - width in centimeters, third - region (any type which can be converted to GMTRegion), other parameters are projection-dependent. Height can be set only in form 3. */ template<> class Convert2Struct { public: struct gmt_projection operator()(const ObjectList* input, bool* issuc) const { typedef SearchParameter > BaseM2Nonneg; struct gmt_projection p; auto size=input->Size(); bool suc=true; if(1==size) // Cases 1, and 2 { Base2Projection proj(input,0); bool suc=true; p=proj(&suc); if(!suc) goto fail; // Conversion failed return p; } // Case 3 { bool upd; bool changetype=false; { BaseMT2Projection updarg(input,"p","proj","projection"); p=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments suc=true; } // Try to set type of projection { BaseM2String type(input,"t","type","projtype"); if(!(type.Exist() || upd)) goto case4; // No named parameter, not update mode, go to case 4 // Check on redundant parameters if(type.Exist()) { std::string typestr=type(&suc); if(!suc) goto fail; // Wrong parameter type if(!p.SetType(typestr)) goto fail; // Incorrect projection type changetype=true; } } // We need the region { BaseMT2Region region(input,"r","region"); if(!(region.Exist() || upd)) goto fail; // Region must be defined in "new" mode if(region.Exist()) p.region=region(&suc); if(!suc) goto fail; // Conversion failed } // Get parameters of projection switch(p.proj) { case(gmt_projection::XY): // x Parameter height (by default equal width) { BaseM2Nonneg height(input,"height","h"); if(height.Exist()) { bool suc=true; p.x.height=height(&suc); if(!suc) goto fail; // Parsing error } else { BaseM2Nonneg width(input,"width","w"); if(!width.Exist() && changetype) p.x.height=gmt_projection::default_width; // We ignore case when parameter width exists but have wrong type. It will be handled later. else { bool suc=true; p.x.height=width(&suc); if(!suc) goto fail; // Parsing error } } break; } case(gmt_projection::CYL_EQU): // q Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.q.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.q.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.q.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.q.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::MERCATOR): // m Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.m.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.m.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.m.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.m.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::TRANSMERCATOR): // t Parameters: central meridian (cmer, default is center of region), latitude of origin (orlat, default is 0.0), scale factor (scale, default is 1.0) { Base2Coord cmer(input,"cmer"), orlat(input,"orlat"); Base2Double scale(input,"scale"); if(cmer.Exist()) { bool suc=true; p.t.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.t.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(orlat.Exist()) { bool suc=true; p.t.orlat=orlat(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.t.orlat.Convert(0.0); if(scale.Exist()) { bool suc=true; p.t.scale=scale(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.t.scale=1.0; break; } case(gmt_projection::OBLIQMERCATOR): // o Parameters: longitude of projection center (clon, default is center of region), latitude of projection center (clat, default is center of region). Other parameters may form one of three combinations and doesn't have default values. 1) Azimuth of the oblique equator (azimuth). 2) Longitude and latitude of second point on oblique equator (eqlon, eqlat). 3) Longitude and latitude of projection pole (polelon, polelat). { Base2Coord clon(input,"clon"), clat(input,"clat"); Base2Coord azimuth(input,"azimuth"), eqlon(input,"eqlon"), eqlat(input,"eqlat"), polelon(input,"polelon"), polelat(input,"polelat"); if(changetype) p.o.type=gmt_projection::OType::NOTDEF; if(clon.Exist()) { bool suc=true; p.o.clon=clon(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.o.clon.Convert((p.region.xb+p.region.xe)*0.5); if(clat.Exist()) { bool suc=true; p.o.clat=clat(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.o.clat.Convert((p.region.yb+p.region.ye)*0.5); // Variant 1 if(azimuth) { bool suc=(gmt_projection::OType::NOTDEF==p.o.type); // If projection subtype already defined, this is an error p.o.type=gmt_projection::OType::A; p.o.azimuth=azimuth(&suc); if(!suc) goto fail; // Parsing error } if(eqlon && eqlat) { bool suc=(gmt_projection::OType::NOTDEF==p.o.type); // If projection subtype already defined, this is an error p.o.type=gmt_projection::OType::B; p.o.eqlon=eqlon(&suc); p.o.eqlat=eqlat(&suc); if(!suc) goto fail; // Parsing error } if(polelon && polelat) { bool suc=(gmt_projection::OType::NOTDEF==p.o.type); // If projection subtype already defined, this is an error p.o.type=gmt_projection::OType::C; p.o.polelon=polelon(&suc); p.o.polelat=polelat(&suc); if(!suc) goto fail; // Parsing error } if(gmt_projection::OType::NOTDEF==p.o.type) goto fail; // Insufficient data for this projection break; } case(gmt_projection::CASSINI): // c Parameters: longitude (clon, default is center of region) and latitude (clat, default is center of region) of central point. { Base2Coord clon(input,"clon"), clat(input,"clat"); if(clon.Exist()) { bool suc=true; p.c.clon=clon(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.c.clon.Convert((p.region.xb+p.region.xe)*0.5); if(clat.Exist()) { bool suc=true; p.c.clat=clat(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.c.clat.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::CYL_EQA): // y Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.y.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.y.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.y.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.y.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::MILLER): // j Parameters: central meridian (cmer, default is center of region) { Base2Coord cmer(input,"cmer"); if(cmer.Exist()) { bool suc=true; p.j.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.j.cmer.Convert((p.region.xb+p.region.xe)*0.5); break; } case(gmt_projection::CYL_STERE): // cyl_stere Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.cyl_stere.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.cyl_stere.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.cyl_stere.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.cyl_stere.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } default: goto fail; // Unknown projection } // Try to find width parameter if(!upd) p.width=p.default_width; { BaseM2Nonneg w(input,"width","w"),h(input,"height","h"); bool suc=true; if(w.Exist()) // width is present { p.width=w(&suc); if(!suc) goto fail; // Parameter width exists, but can't be converted to double if(!ProjectionRealSize(p)) goto fail; // Something go wrong with determining real dimensions } else if(h.Exist()) // width is not present, but height is present { double hval=h(&suc); if(!suc) goto fail; // Parameter height exists, but can't be converted to double if(gmt_projection::XY==p.proj) p.width=hval; // For decart projection we use height as width if width is not specified if(!ProjectionRealSize(p,hval)) goto fail; // Something go wrong with determining real dimensions } else // No width, no height, using default or old width if(!ProjectionRealSize(p)) goto fail; // Something go wrong with determining real dimensions } return p; // All parameters setted } case4: // Case 4 if(size>=3) { // First argument, try to set type of projection { Base2String type(input,0); bool suc=true; std::string typestr; typestr=type(&suc); if(!suc) goto fail; // No type - no projection if(!p.SetType(typestr)) goto fail; // Unknown type - no projection } // Second argument, set up width { Base2Double w(input,1); bool suc=true; p.width=w(&suc); if(!suc) goto fail; // Conversion failed, no width } // Third argument, set up region { Base2Region reg(input,2); bool suc=true; p.region=reg(&suc); if(!suc) goto fail; // Conversion failed, no region } // Projection specific parameters switch(p.proj) { case(gmt_projection::XY): // x Parameter 4 is height (by default equal width) { Base2Double height(input,3); if(height.Exist()) { bool suc=true; p.x.height=height(&suc); if(!suc) goto fail; // Parsing error } else p.x.height=p.width; if(size>4) goto fail; // Unknown parameter(s) break; } case(gmt_projection::CYL_EQU): // q Parameters: 4 is central meridian (default is center of region), 5 is standart parallel (default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.q.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.q.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.q.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.q.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::MERCATOR): // m Parameters: 4 is central meridian (default is center of region), 5 is standart parallel (default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.m.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.m.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.m.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.m.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::TRANSMERCATOR): // t Parameters: 4 is central meridian (default is center of region), 5 is latitude of origin (default is 0.0), 6 is scale factor (default is 1.0) { Base2Coord cmer(input,3), orlat(input,4); Base2Double scale(input,5); if(cmer.Exist()) { bool suc=true; p.t.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.t.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(orlat.Exist()) { bool suc=true; p.t.orlat=orlat(&suc); if(!suc) goto fail; // Parsing error } else p.t.orlat.Convert(0.0); if(scale.Exist()) { bool suc=true; p.t.scale=scale(&suc); if(!suc) goto fail; // Parsing error } else p.t.scale=1.0; if(size>6) goto fail; // Unknown parameter(s) break; } case(gmt_projection::OBLIQMERCATOR): // o There is no default values for this projection. Parameters: 4 is subtype ("a" or "azimuth", "b" or "equator", "c" or "pole"), 5 is longitude of projection center, 6 is latitude of projection center. Other parameters may form one of three combinations. 1) 7 is azimuth of the oblique equator. 2) Longitude and latitude of second point on oblique equator (7, 8). 3) Longitude and latitude of projection pole (7, 8). { if(size<4) goto fail; // Insufficient data for this projection OBType stype(input->At(3)); if(!stype) goto fail; // Incorrect parameter type std::string subtype=stype->Value(); tolower(subtype); Base2Coord clon(input,4), clat(input,5); Base2Coord azimuth(input,6), eqlon(input,6), eqlat(input,7), polelon(input,6), polelat(input,7); p.o.type=gmt_projection::OType::NOTDEF; { bool suc=true; p.o.clon=clon(&suc); p.o.clat=clat(&suc); if(!suc) goto fail; // Parsing error } // Variant 1 if("a"==subtype || "azimuth"==subtype) { p.o.type=gmt_projection::OType::A; bool suc=true; p.o.azimuth=azimuth(&suc); if(!suc) goto fail; // Parsing error if(size>7) goto fail; // Unknown parameter(s) } if("b"==subtype || "equator"==subtype) { p.o.type=gmt_projection::OType::B; bool suc=true; p.o.eqlon=eqlon(&suc); p.o.eqlat=eqlat(&suc); if(!suc) goto fail; // Parsing error if(size>8) goto fail; // Unknown parameter(s) } if("c"==subtype || "pole"==subtype) { p.o.type=gmt_projection::OType::C; bool suc=true; p.o.polelon=polelon(&suc); p.o.polelat=polelat(&suc); if(!suc) goto fail; // Parsing error if(size>8) goto fail; // Unknown parameter(s) } if(gmt_projection::OType::NOTDEF==p.o.type) goto fail; // Insufficient data for this projection break; } case(gmt_projection::CASSINI): // c Parameters: longitude (4, default is center of region) and latitude (5, default is center of region) of central point. { Base2Coord clon(input,3), clat(input,4); if(clon.Exist()) { bool suc=true; p.c.clon=clon(&suc); if(!suc) goto fail; // Parsing error } else p.c.clon.Convert((p.region.xb+p.region.xe)*0.5); if(clat.Exist()) { bool suc=true; p.c.clat=clat(&suc); if(!suc) goto fail; // Parsing error } else p.c.clat.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::CYL_EQA): // y Parameters: central meridian (4, default is center of region), standart parallel (5, default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.y.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.y.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.y.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.y.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::MILLER): // j Parameters: central meridian (4, default is center of region) { Base2Coord cmer(input,3); if(cmer.Exist()) { bool suc=true; p.j.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.j.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(size>4) goto fail; // Unknown parameter(s) break; } case(gmt_projection::CYL_STERE): // cyl_stere Parameters: central meridian (3, default is center of region), standart parallel (4, default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.cyl_stere.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.cyl_stere.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.cyl_stere.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.cyl_stere.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } default: goto fail; // Unknown projection } if(ProjectionRealSize(p)) return p; } fail: *issuc=false; return p; // Something go wrong } }; // Helper types typedef SearchParameterWDefO,false,PMin<0>,PMax<255> > Base2RGB; typedef SearchParameterWDefO,false,PMin<0>,PMax<360> > Base2Hue; typedef SearchParameterWDefO,false,PMin<0>,PMax<1 > > Base2SV; typedef SearchParameterWDefO,false,PMin<0>,PMax<100> > Base2CMYK; typedef SearchParameterWDefO,false,PMin<0>,PMax<100> > Base2Transp; typedef SearchParameter,PMax<255> > BaseM2RGB; typedef SearchParameter,PMax<360> > BaseM2Hue; typedef SearchParameter,PMax<1 > > BaseM2SV; typedef SearchParameter,PMax<100> > BaseM2CMYK; typedef SearchParameter,PMax<100> > BaseM2Transp; // Converting List to GMTColor /* Input: 1) One argument, Color. Return copy of this argument. 2) One argument, list. Recursively calling GMT_Color. 3) Pairs list. Names are gray (grey), r(red),g(green),b(blue), h(hue),s(sat,saturation),v(value), c(cyan),m(magenta),y(yellow),k(black) and t(transp,transparency). The different color models can't be mixed. Gray, r, g, b are doubles in the range 0-255, h is double in the range 0-360, s and v are doubles in the range 0-1 and c, m, y, k and transparency are doubles in the range 0-100. Default value for all parameters is 0. If pair with name color exists in list, when recursively calling GMT_Color on the value of this parameter, when modify it with specified parameters. If argument with type Color exists in list, when copy it and modify with specified parameters. In both cases color model changing as specified by parameters. 4) One argument, interprets as gray. 5) Three arguments, interprets as r, g, b. 6) Four arguments, interprets as c, m, y, k. Transparency or HSV model can be set only in form 3. */ template<> class Convert2Struct { public: struct gmt_color operator()(const ObjectList* input, bool* issuc) const { struct gmt_color c; auto size=input->Size(); if(1==size) // Cases 1, 2 and 4 { Base2Color color(input,0); bool suc=true; c=color(&suc); if(!suc) goto fail; // Conversion failed return c; } // Case 3 { bool cmodset=false; bool upd; { BaseMT2Color updarg(input,"color"); bool suc=true; c=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments } if(!upd) { // default color is black c.transparency=0; c.model=gmt_color::GRAY; c.gray=0.0; } { BaseM2Transp t(input,"t","transp","transparency"); if(t.Exist()) { bool suc=true; c.transparency=t(&suc); if(!suc) goto fail; // Parsing error } } // GRAY { BaseM2RGB g(input,"gray","grey"); if(g.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.model=gmt_color::GRAY; c.gray=g(&suc); // Update mode ignored in this case if(!suc) goto fail; // Parsing error cmodset=true; } } // RGB { BaseM2RGB r(input,"r","red"), g(input,"g","green"), b(input,"b","blue"); if(r.Exist() || g.Exist() || b.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.ToRGB(); if(r.Exist()) c.r=r(&suc); if(g.Exist()) c.g=g(&suc); if(b.Exist()) c.b=b(&suc); if(!suc) goto fail; // Parsing error cmodset=true; } } // HSV { BaseM2Hue h(input,"h","hue"); BaseM2SV s(input,"s","sat","saturation"), v(input,"v","val","value"); if(h.Exist() || s.Exist() || v.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.ToHSV(); if(h.Exist()) c.hue=h(&suc); if(s.Exist()) c.saturation=s(&suc); if(v.Exist()) c.value=v(&suc); if(!suc) goto fail; // Parsing error cmodset=true; } } // CMYK { BaseM2CMYK cc(input,"c","cyan"), m(input,"m","magenta"), y(input,"y","yellow"), k(input,"k","black"); if(cc.Exist() || m.Exist() || y.Exist() || k.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.ToCMYK(); if(cc.Exist()) c.cyan=cc(&suc); if(m.Exist()) c.magenta=m(&suc); if(y.Exist()) c.yellow=y(&suc); if(k.Exist()) c.black=k(&suc); if(!suc) goto fail; // Parsing error cmodset=true; } } if(cmodset || upd) return c; // Color created or updated } // Case 5 if(3==size) { Base2RGB r(input,0), g(input,1), b(input,2); c.model=gmt_color::RGB; bool suc=true; c.r=r(&suc); c.g=g(&suc); c.b=b(&suc); if(!suc) goto fail; // Parsing error return c; } // Case 6 if(4==size) { Base2CMYK cc(input,0), m(input,1), y(input,2), k(input,3); c.model=gmt_color::CMYK; bool suc=true; c.cyan=cc(&suc); c.magenta=m(&suc); c.yellow=y(&suc); c.black=k(&suc); if(!suc) goto fail; // Parsing error return c; } fail: *issuc=false; return c; // Something go wrong } }; // Helper types typedef SearchParameterWDefO,false,PMin<0> > Base2Width; typedef SearchParameter > BaseM2Width; // Converting List to GMTPen /* Input: 1) One argument, Pen. Return copy of this argument. 2) One argument, list. Recursively calling GMT_Pen. 3) Pairs list. Names are width (w), color(c), dash(f). Default values is 1 for width, black for color and solid for dash. If pair with name pen(p) exists in list, when recursively calling GMT_Line on the value of this parameter, when modify it with specified parameters. If argument with type Pen exists in list, when copy it and modify with specified parameters. Instead of color and dash unnamed parameters with Color and Dash types may be used. 4) One argument, interprets as width of black solid line. 5) Two arguments, interprets as width and color of solid line. 6) Three arguments, interprets as width, color and dash. */ template<> class Convert2Struct { public: struct gmt_pen operator()(const ObjectList* input, bool* issuc) const { struct gmt_pen p; auto size=input->Size(); if(1==size) // Cases 1, 2 and 4 { Base2Pen pen(input,0); bool suc=true; p=pen(&suc); if(!suc) goto fail; // Conversion failed return p; } // Case 3 { bool casevalid=false; bool upd; { BaseMT2Pen updarg(input,"pen","p"); bool suc=true; p=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments } if(!upd) { // default pen is solid black 1mm width p.width=gmt_pen::default_width; p.color.Convert(0); p.dash.Clear(); } { BaseM2Width w(input,"w","width"); if(w.Exist()) { bool suc=true; p.width=w(&suc); if(!suc) goto fail; // Parsing error casevalid=true; } } // Color { BaseMT2Color color(input,"color","c"); if(color.Exist()) { bool suc=true; p.color=color(&suc); if(!suc) goto fail; // Parsing error casevalid=true; } } // Dash { BaseMT2Dash dash(input,"dash","d"); if(dash.Exist()) { bool suc=true; p.dash=dash(&suc); if(!suc) goto fail; // Parsing error p.dash.width=p.width; casevalid=true; } } if(casevalid || upd) return p; // Pen created or updated } // Case 5 and 6 if(2==size || 3==size) { Base2Width w(input,0); Base2Color c(input,1); Base2Dash d(input,2); bool suc=true; p.width=w(&suc); p.color=c(&suc); if(!suc) goto fail; // Something wrong p.dash=d(&suc,p.width); if(!suc) goto fail; // Something wrong return p; } fail: *issuc=false; return p; // Something go wrong } }; // Converting List to GMTFont /* Input: 1) One argument, Font. Return copy of this argument. 2) One argument, list. Recursively calling GMT_Font. 3) Pairs list. Names are size (s), family (f) and color(c). Default values is 12pt for size, Times-Roman for family and black for color. If pair with name font exists in list, when recursively calling GMT_Font on the value of this parameter, when modify it with specified parameters. If argument with type Font exists in list, when copy it and modify with specified parameters. Instead of color unnamed parameter with Color type may be used. 4) One numeric argument, interprets as size of Times-Roman black font. 5) One string argument, interprets as [size][,family][,color] or [family][,color]. 6) Two arguments, interprets as size and family of black font. 7) Three arguments, interprets as size, family and color. */ template<> class Convert2Struct { public: struct gmt_font operator()(const ObjectList* input, bool* issuc) const { struct gmt_font f; auto size=input->Size(); if(1==size) // Cases 1, 2, 4 and 5 { Base2Font font(input,0); bool suc=true; f=font(&suc); if(!suc) goto fail; // Conversion failed return f; } // Case 3 { bool casevalid=false; bool upd; { BaseMT2Font updarg(input,"font"); bool suc=true; f=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments } if(!upd) { // default font is Times-Roman, 12pt, black f.size=gmt_font::default_size; f.color.Convert(0); f.family=gmt_font::default_family; } // Size { BaseM2Width s(input,"s","size"); if(s.Exist()) { bool suc=true; f.size=s(&suc); if(!suc) goto fail; // Parsing error casevalid=true; } } // Family { BaseM2String family(input,"family","f"); if(family.Exist()) { bool suc=true; f.family=family(&suc); if(!suc) goto fail; // Parsing error casevalid=true; } } // Color { BaseMT2Color color(input,"color","c"); if(color.Exist()) { bool suc=true; f.color=color(&suc); if(!suc) goto fail; // Parsing error casevalid=true; } } if(casevalid || upd) return f; // Pen created or updated } // Case 6 and 7 if(2==size || 3==size) { Base2Width s(input,0); Base2String fam(input,1); Base2Color c(input,2); bool suc=true; f.size=s(&suc); f.family=fam(&suc); f.color=c(&suc); if(!suc) goto fail; // Something wrong return f; } fail: *issuc=false; return f; // Something go wrong } }; // Template for generating GMTObject from ObjectList template const ObjectBase* GMT_Type(const ObjectList* input) { bool suc=true; Struct s=Convert2Struct()(input,&suc); if(suc) return new ObjectGMTClass(s); else return 0; } // Shift position of layer const ObjectBase* GMT_LayerShift(const ObjectList* input); // Draw frame with tics const ObjectBase* GMT_DrawFrame(const ObjectList* input); #endif