#ifndef MODGMT_FUNC_H #define MODGMT_FUNC_H #include "modgmt_internals.h" #include "modgmt_objects.h" ObjectBase* GMT_Header(const ObjectList* input); ObjectBase* GMT_Footer(const ObjectList* input); ObjectBase* GMT_ColorGray(const ObjectList* input); ObjectBase* GMT_ColorRGB(const ObjectList* input); ObjectBase* GMT_ColorHSV(const ObjectList* input); ObjectBase* GMT_ColorCMYK(const ObjectList* input); // Extension of OBTypeM template for easy work with lists template class Func, class... O> class Base2Something: public OBTypeM { Base2Something() = delete; Base2Something(Base2Something&&) = delete; Base2Something(Base2Something&) = delete; public: Base2Something(const ObjectBase* arg):OBTypeM(arg) {}; Base2Something(const ObjectList* input, const std::string& name):OBTypeM(input->Get(name)){}; Base2Something(const ObjectList* input, const ObjectList::ListValues::size_type i):OBTypeM((iSize())?input->At(i):0){}; // Check index, because At is not safe template auto operator ()(bool* b, Args... args) const -> decltype(this->OBTypeM::template operator()(b, args...)) { if(!OBTypeM::operator bool()) *b=false; return OBTypeM::operator ()(b,args...); } }; // Generic converting template template class Convert2Struct { public: template Struct operator()(const O* o, bool* suc, Args... args) const { Struct s; if(!s.Convert(o->Value(),args...)) *suc=false; return s; } }; // Extract structure from corresponding class template class Convert2Struct > { public: template Struct operator()(const ObjectGMTClass* o, bool* suc, Args... args) const { return o->Data(); } }; // Converting Int or Real to double template class Convert2Struct { public: double operator ()(const O* q, bool* suc) const {return q->Value();} }; // Converting String to double template<> class Convert2Struct { public: double operator ()(const ObjectString* q, bool* suc) const {double d=0; *suc=(*suc) && str2double(q->Value(),&d); return d;} }; // Get string template<> class Convert2Struct { public: std::string operator ()(const ObjectString* q, bool* suc) const {return q->Value();} }; // Generic type storage class template class gTypeStorage { template class Convertor: public Convert2Struct {}; // Conversion type public: typedef Base2Something Base2Type; }; // Specific type storage class template class TypeStorage; // Default ObjectList converter template class Convert2Struct { public: template Struct operator()(const ObjectList* o, bool* suc, Args... args) const { Struct s; if(o->Size()!=1) {*suc=false; return s;} typename TypeStorage::Base2Type a(o,0); s=a(suc,args...); return s; } }; // Helper struct for class SearchParameter template // Search function for non-gmt_struct types do nothing struct SearchHelper {void operator()(const ObjectList* input, Struct* s, bool* exist, bool* ok) const {}}; template // Search function for gmt_struct types find ObjectGMTClass in list struct SearchHelper { void operator()(const ObjectList* input, Struct* s, bool* exist, bool* ok) const { for(ObjectList::ListValues::size_type i=0;iSize();i++) { OBType > obj(input->At(i)); if(obj) { if(*exist) {*ok=false; break;} // Object already found *s=obj->Data(); *exist=true; } } } }; // This class search parameter with specified names in the list, which may be converted to Struct. // If Struct is derived from gmt_struct, additionaly search unnamed parameter of type ObjectGMTClass template class SearchParameter { bool exist; // There is at least one parameter with given names bool ok; // True if conversion to corresponding structure was successful and there is only one parameter with given names Struct val; typedef typename TypeStorage::Base2Type Base2Struct; public: // Recursive constructor template SearchParameter(const ObjectList* input, const std::string& name, Args... args):SearchParameter(input,args...) { if(ok) { Base2Struct a(input,name); if(exist && a.Exist()) ok=false; else if(a.Exist()) { exist=true; ok=true; val=a(&ok); } } } // Bottom of recursion SearchParameter(const ObjectList* input):exist(false),ok(true) {SearchHelper::value>()(input,&val,&exist,&ok);} Struct operator()(bool* suc) const { if(!ok || !exist) *suc=false; return val; } Struct operator()(bool* ex, bool* suc) const { *ex=exist; if(!ok || !exist) *suc=false; return val; } bool Exist() const {return exist;} }; // Definitions for double template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Double; // Copy definition to global namespace // Definitions for string template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2String; // Copy definition to global namespace // This source using Base2Double to get value of parameter. If parameter not exist, fallback to default value. // Default value can be setted as template parameter or as parameter of constructor. // We use rational representation of floating point number, because double type values not allowed as template parameter template class SourceDefaultVal: public Base2Double { double defval; public: // Constructors without default value SourceDefaultVal(const ObjectBase* arg):Base2Double(arg),defval(static_cast(num)/denum) {}; SourceDefaultVal(const ObjectList* input, const std::string& name):Base2Double(input,name),defval(static_cast(num)/denum){}; SourceDefaultVal(const ObjectList* input, const ObjectList::ListValues::size_type i):Base2Double(input,i),defval(static_cast(num)/denum){}; // Constructors with default value SourceDefaultVal(const ObjectBase* arg, double d):Base2Double(arg),defval(d) {}; SourceDefaultVal(const ObjectList* input, const std::string& name, double d):Base2Double(input,name),defval(d){}; SourceDefaultVal(const ObjectList* input, const ObjectList::ListValues::size_type i, double d):Base2Double(input,i),defval(d){}; double operator()(bool* suc) const { if(Exist()) return Base2Double::operator()(suc); else return defval; } }; // This source try to get value of named parameter from list, which may have different names. Only one name must be in list. template class SourceMultiInputNames { bool exist; // There is at least one parameter with given names bool ok; // True if conversion to Struct was successful and there is only one parameter with given names Struct val; typedef typename TypeStorage::Base2Type Base2Struct; public: // Recursive constructor template SourceMultiInputNames(const ObjectList* input, const std::string& name, Args... args):SourceMultiInputNames(input,args...) { Base2Struct a(input,name); if(exist && a.Exist()) ok=false; else if(a.Exist()) { exist=true; ok=true; val=a(&ok); } } // Bottom of recursion SourceMultiInputNames(const ObjectList* input, const std::string& name) { Base2Struct a(input,name); exist=a.Exist(); ok=true; if(exist) val=a(&ok); } Struct operator()(bool* suc) const { if(!ok || !exist) *suc=false; return val; } bool Exist() const {return exist;} }; // Definitions for ObjectGMTCoord template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Coord; // Definitions for ObjectGMTRegion template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Region; // Definitions for ObjectGMTProjection template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Projection; // Definitions for ObjectGMTColor template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Color; // Definitions for ObjectGMTDash template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Dash; // Definitions for ObjectGMTPen template<> class TypeStorage: public gTypeStorage {}; typedef TypeStorage::Base2Type Base2Pen; // Conversion from List to GMTRegion /* Input: 1) One argument, Region. Return copy of this argument. 2) One argument, case insensitive string "global180" (global domain -R-180/180/-90/90), "global360" (global domain -R0/360/-90/90) or "global" (synonym of "global360"). 3) One argument, list. Recursively calling GMT_Region. 4) Pairs list. Names are xb, xe, yb, ye, and, optionally, type="bbox|nobbox|global180|global360|global". Names are case sensitive, values can be Int, Real, String or GMTCoord. If pair with name region (r) exists in list, when recursively calling GMT_Region on the value of this parameter, when modify it with specified parameters. If argument with type Region exists in list, when copy it and modify with specified parameters. 5) 4 or 5 parameters. Fifth parameter can be "bbox" or "nobbox" (default). If fifth parameter is string "bbox", when first four parameters interprets as xb,yb,xe,ye, else as xb,xe,yb,ye. */ template<> class Convert2Struct { public: struct gmt_region operator()(const ObjectList* input, bool* issuc) const { struct gmt_region r; auto size=input->Size(); if(1==size) // Cases 1, 2 and 3 { Base2Region region(input,0); bool suc=true; r=region(&suc); if(!suc) goto fail; // Conversion failed return r; } // Case 4 { OBType type(input->Get("type")); if(type && r.Convert(type->Value())) return r; // type is one of "global*" string, we can return, becuse upd is irrelevant bool upd; { SearchParameter updarg(input,"r","region"); bool suc=true; r=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments } Base2Coord ixb(input,"xb"), ixe(input,"xe"), iyb(input,"yb"), iye(input,"ye"); if(!(type.Exist() || ixb.Exist() || ixe.Exist() || iyb.Exist() || iye.Exist() || upd)) goto case5; // No named parameters, no update mode, possibly case 5 bool suc=true; struct gmt_coord xb,yb,xe,ye; bool isbbox=upd?(gmt_region::BBOX==r.type):false; if(type) { std::string s=type->Value(); tolower(s); if("bbox"==s) isbbox=true; if("nobbox"==s) isbbox=false; if("bbox"!=s && "nobbox"!=s) goto fail; // Unknown type } if(upd) { if(!ixb.Exist()) xb=r.xb; if(!ixe.Exist()) xe=r.xe; if(!iyb.Exist()) yb=r.yb; if(!iye.Exist()) ye=r.ye; } else suc=suc && ixb && ixe && iyb && iye; // In "new" mode all parameters must exists and have correct type if(ixb.Exist()) xb=ixb(&suc); if(ixe.Exist()) xe=ixe(&suc); if(iyb.Exist()) yb=iyb(&suc); if(iye.Exist()) ye=iye(&suc); if(!suc) goto fail; // Something wrong if(!r.Convert(xb,xe,yb,ye,isbbox)) goto fail; // Conversion failed return r; // Case 3 with all parameters } case5: // Case 5 if(4==size || 5==size) { bool isbbox=false; if(5==size) { OBType type(input->At(4)); if(!type) goto fail; // Unknown fifth parameter std::string str=type->Value(); tolower(str); if("bbox"!=str || "nobbox"!=str) goto fail; // Unknown fifth parameter if("bbox"==str) isbbox=true; } Base2Coord ixb(input,0), ixe(input,(isbbox?2:1)), iyb(input,(isbbox?1:2)), iye(input,3); bool suc=true; struct gmt_coord xb=ixb(&suc),yb=iyb(&suc),xe=ixe(&suc),ye=iye(&suc); if(ixb && ixe && iyb && iye && suc) { if(!r.Convert(xb,xe,yb,ye,isbbox)) goto fail; // Conversion failed return r; // Case 4 with all parameters } } fail: *issuc=false; return r; // Something go wrong } }; // Converting List to GMTProjection /* Input: 1) One argument, Projection. Return copy of this argument. 2) One argument, list. Recursively calling GMT_Projection. 3) Pairs list. Names are projtype (type) (string), region (GMTRegion, string or list, which can be converted to GMTRegion), width (or height) in centimeters (may be absent, default width is 10 cm) and projection-dependent parameters. Pair with name region may absent, in this case search in list and using as region object with ObjectGMTRegion type. If pair with name projection (p or proj) exists in list, when recursively calling GMT_Projection on the value of this parameter, when modify it with specified parameters. If argument with type Projection exists in list, when copy it and modify with specified parameters. 4) 3 or more parameters. First parameter is projection type (string), second - width in centimeters, third - region (any type which can be converted to GMTRegion), other parameters are projection-dependent. Height can be set only in form 3. */ template<> class Convert2Struct { public: struct gmt_projection operator()(const ObjectList* input, bool* issuc) const { typedef GetDouble,PMin<0> > BaseM2Nonneg; struct gmt_projection p; auto size=input->Size(); if(1==size) // Cases 1, and 2 { Base2Projection proj(input,0); bool suc=true; p=proj(&suc); if(!suc) goto fail; // Conversion failed return p; } // Case 3 { bool upd; bool changetype=false; { SearchParameter updarg(input,"p","proj","projection"); bool suc=true; p=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments } // Try to set type of projection { SearchParameter type(input,"t","type","projtype"); if(!(type.Exist() || upd)) goto case4; // No named parameter, not update mode, go to case 4 // Check on redundant parameters bool suc=true; if(type.Exist()) { std::string typestr=type(&suc); if(!suc) goto fail; // Wrong parameter type if(!p.SetType(typestr)) goto fail; // Incorrect projection type changetype=true; } } // We need the region { SearchParameter region(input,"r","region"); if(!(region.Exist() || upd)) goto fail; // Region must be defined in "new" mode bool suc=true; if(region.Exist()) p.region=region(&suc); if(!suc) goto fail; // Conversion failed } // Get parameters of projection switch(p.proj) { case(gmt_projection::XY): // x Parameter height (by default equal width) { BaseM2Nonneg height(input,"height","h"); if(height.Exist()) { bool suc=true; p.x.height=height(&suc); if(!suc) goto fail; // Parsing error } else { BaseM2Nonneg width(input,"width","w"); if(!width.Exist() && changetype) p.x.height=gmt_projection::default_width; // We ignore case when parameter width exists but have wrong type. It will be handled later. else { bool suc=true; p.x.height=width(&suc); if(!suc) goto fail; // Parsing error } } break; } case(gmt_projection::CYL_EQU): // q Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.q.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.q.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.q.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.q.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::MERCATOR): // m Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.m.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.m.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.m.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.m.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::TRANSMERCATOR): // t Parameters: central meridian (cmer, default is center of region), latitude of origin (orlat, default is 0.0), scale factor (scale, default is 1.0) { Base2Coord cmer(input,"cmer"), orlat(input,"orlat"); Base2Double scale(input,"scale"); if(cmer.Exist()) { bool suc=true; p.t.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.t.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(orlat.Exist()) { bool suc=true; p.t.orlat=orlat(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.t.orlat.Convert(0.0); if(scale.Exist()) { bool suc=true; p.t.scale=scale(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.t.scale=1.0; break; } case(gmt_projection::OBLIQMERCATOR): // o Parameters: longitude of projection center (clon, default is center of region), latitude of projection center (clat, default is center of region). Other parameters may form one of three combinations and doesn't have default values. 1) Azimuth of the oblique equator (azimuth). 2) Longitude and latitude of second point on oblique equator (eqlon, eqlat). 3) Longitude and latitude of projection pole (polelon, polelat). { Base2Coord clon(input,"clon"), clat(input,"clat"); Base2Coord azimuth(input,"azimuth"), eqlon(input,"eqlon"), eqlat(input,"eqlat"), polelon(input,"polelon"), polelat(input,"polelat"); if(changetype) p.o.type=gmt_projection::OType::NOTDEF; if(clon.Exist()) { bool suc=true; p.o.clon=clon(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.o.clon.Convert((p.region.xb+p.region.xe)*0.5); if(clat.Exist()) { bool suc=true; p.o.clat=clat(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.o.clat.Convert((p.region.yb+p.region.ye)*0.5); // Variant 1 if(azimuth) { bool suc=(gmt_projection::OType::NOTDEF==p.o.type); // If projection subtype already defined, this is an error p.o.type=gmt_projection::OType::A; p.o.azimuth=azimuth(&suc); if(!suc) goto fail; // Parsing error } if(eqlon && eqlat) { bool suc=(gmt_projection::OType::NOTDEF==p.o.type); // If projection subtype already defined, this is an error p.o.type=gmt_projection::OType::B; p.o.eqlon=eqlon(&suc); p.o.eqlat=eqlat(&suc); if(!suc) goto fail; // Parsing error } if(polelon && polelat) { bool suc=(gmt_projection::OType::NOTDEF==p.o.type); // If projection subtype already defined, this is an error p.o.type=gmt_projection::OType::C; p.o.polelon=polelon(&suc); p.o.polelat=polelat(&suc); if(!suc) goto fail; // Parsing error } if(gmt_projection::OType::NOTDEF==p.o.type) goto fail; // Insufficient data for this projection break; } case(gmt_projection::CASSINI): // c Parameters: longitude (clon, default is center of region) and latitude (clat, default is center of region) of central point. { Base2Coord clon(input,"clon"), clat(input,"clat"); if(clon.Exist()) { bool suc=true; p.c.clon=clon(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.c.clon.Convert((p.region.xb+p.region.xe)*0.5); if(clat.Exist()) { bool suc=true; p.c.clat=clat(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.c.clat.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::CYL_EQA): // y Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.y.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.y.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.y.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.y.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } case(gmt_projection::MILLER): // j Parameters: central meridian (cmer, default is center of region) { Base2Coord cmer(input,"cmer"); if(cmer.Exist()) { bool suc=true; p.j.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.j.cmer.Convert((p.region.xb+p.region.xe)*0.5); break; } case(gmt_projection::CYL_STERE): // cyl_stere Parameters: central meridian (cmer, default is center of region), standart parallel (stpar, default is center of region) { Base2Coord cmer(input,"cmer"), stpar(input,"stpar"); if(cmer.Exist()) { bool suc=true; p.cyl_stere.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.cyl_stere.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.cyl_stere.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else if(changetype) p.cyl_stere.stpar.Convert((p.region.yb+p.region.ye)*0.5); break; } default: goto fail; // Unknown projection } // Try to find width parameter if(!upd) p.width=p.default_width; { BaseM2Nonneg w(input,"width","w"),h(input,"height","h"); bool suc=true; if(w.Exist()) // width is present { p.width=w(&suc); if(!suc) goto fail; // Parameter width exists, but can't be converted to double if(!ProjectionRealSize(p)) goto fail; // Something go wrong with determining real dimensions } else if(h.Exist()) // width is not present, but height is present { double hval=h(&suc); if(!suc) goto fail; // Parameter height exists, but can't be converted to double if(gmt_projection::XY==p.proj) p.width=hval; // For decart projection we use height as width if width is not specified if(!ProjectionRealSize(p,hval)) goto fail; // Something go wrong with determining real dimensions } else // No width, no height, using default or old width if(!ProjectionRealSize(p)) goto fail; // Something go wrong with determining real dimensions } return p; // All parameters setted } case4: // Case 4 if(size>=3) { // First argument, try to set type of projection { Base2String type(input,0); bool suc=true; std::string typestr; typestr=type(&suc); if(!suc) goto fail; // No type - no projection if(!p.SetType(typestr)) goto fail; // Unknown type - no projection } // Second argument, set up width { Base2Double w(input,1); bool suc=true; p.width=w(&suc); if(!suc) goto fail; // Conversion failed, no width } // Third argument, set up region { Base2Region reg(input,2); bool suc=true; p.region=reg(&suc); if(!suc) goto fail; // Conversion failed, no region } // Projection specific parameters switch(p.proj) { case(gmt_projection::XY): // x Parameter 4 is height (by default equal width) { Base2Double height(input,3); if(height.Exist()) { bool suc=true; p.x.height=height(&suc); if(!suc) goto fail; // Parsing error } else p.x.height=p.width; if(size>4) goto fail; // Unknown parameter(s) break; } case(gmt_projection::CYL_EQU): // q Parameters: 4 is central meridian (default is center of region), 5 is standart parallel (default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.q.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.q.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.q.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.q.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::MERCATOR): // m Parameters: 4 is central meridian (default is center of region), 5 is standart parallel (default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.m.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.m.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.m.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.m.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::TRANSMERCATOR): // t Parameters: 4 is central meridian (default is center of region), 5 is latitude of origin (default is 0.0), 6 is scale factor (default is 1.0) { Base2Coord cmer(input,3), orlat(input,4); Base2Double scale(input,5); if(cmer.Exist()) { bool suc=true; p.t.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.t.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(orlat.Exist()) { bool suc=true; p.t.orlat=orlat(&suc); if(!suc) goto fail; // Parsing error } else p.t.orlat.Convert(0.0); if(scale.Exist()) { bool suc=true; p.t.scale=scale(&suc); if(!suc) goto fail; // Parsing error } else p.t.scale=1.0; if(size>6) goto fail; // Unknown parameter(s) break; } case(gmt_projection::OBLIQMERCATOR): // o There is no default values for this projection. Parameters: 4 is subtype ("a" or "azimuth", "b" or "equator", "c" or "pole"), 5 is longitude of projection center, 6 is latitude of projection center. Other parameters may form one of three combinations. 1) 7 is azimuth of the oblique equator. 2) Longitude and latitude of second point on oblique equator (7, 8). 3) Longitude and latitude of projection pole (7, 8). { if(size<4) goto fail; // Insufficient data for this projection OBType stype(input->At(3)); if(!stype) goto fail; // Incorrect parameter type std::string subtype=stype->Value(); tolower(subtype); Base2Coord clon(input,4), clat(input,5); Base2Coord azimuth(input,6), eqlon(input,6), eqlat(input,7), polelon(input,6), polelat(input,7); p.o.type=gmt_projection::OType::NOTDEF; { bool suc=true; p.o.clon=clon(&suc); p.o.clat=clat(&suc); if(!suc) goto fail; // Parsing error } // Variant 1 if("a"==subtype || "azimuth"==subtype) { p.o.type=gmt_projection::OType::A; bool suc=true; p.o.azimuth=azimuth(&suc); if(!suc) goto fail; // Parsing error if(size>7) goto fail; // Unknown parameter(s) } if("b"==subtype || "equator"==subtype) { p.o.type=gmt_projection::OType::B; bool suc=true; p.o.eqlon=eqlon(&suc); p.o.eqlat=eqlat(&suc); if(!suc) goto fail; // Parsing error if(size>8) goto fail; // Unknown parameter(s) } if("c"==subtype || "pole"==subtype) { p.o.type=gmt_projection::OType::C; bool suc=true; p.o.polelon=polelon(&suc); p.o.polelat=polelat(&suc); if(!suc) goto fail; // Parsing error if(size>8) goto fail; // Unknown parameter(s) } if(gmt_projection::OType::NOTDEF==p.o.type) goto fail; // Insufficient data for this projection break; } case(gmt_projection::CASSINI): // c Parameters: longitude (4, default is center of region) and latitude (5, default is center of region) of central point. { Base2Coord clon(input,3), clat(input,4); if(clon.Exist()) { bool suc=true; p.c.clon=clon(&suc); if(!suc) goto fail; // Parsing error } else p.c.clon.Convert((p.region.xb+p.region.xe)*0.5); if(clat.Exist()) { bool suc=true; p.c.clat=clat(&suc); if(!suc) goto fail; // Parsing error } else p.c.clat.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::CYL_EQA): // y Parameters: central meridian (4, default is center of region), standart parallel (5, default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.y.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.y.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.y.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.y.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } case(gmt_projection::MILLER): // j Parameters: central meridian (4, default is center of region) { Base2Coord cmer(input,3); if(cmer.Exist()) { bool suc=true; p.j.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.j.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(size>4) goto fail; // Unknown parameter(s) break; } case(gmt_projection::CYL_STERE): // cyl_stere Parameters: central meridian (3, default is center of region), standart parallel (4, default is center of region) { Base2Coord cmer(input,3), stpar(input,4); if(cmer.Exist()) { bool suc=true; p.cyl_stere.cmer=cmer(&suc); if(!suc) goto fail; // Parsing error } else p.cyl_stere.cmer.Convert((p.region.xb+p.region.xe)*0.5); if(stpar.Exist()) { bool suc=true; p.cyl_stere.stpar=stpar(&suc); if(!suc) goto fail; // Parsing error } else p.cyl_stere.stpar.Convert((p.region.yb+p.region.ye)*0.5); if(size>5) goto fail; // Unknown parameter(s) break; } default: goto fail; // Unknown projection } if(ProjectionRealSize(p)) return p; } fail: *issuc=false; return p; // Something go wrong } }; // Helper types typedef GetDouble,PMin<0>,PMax<255> > Base2RGB; typedef GetDouble,PMin<0>,PMax<360> > Base2Hue; typedef GetDouble,PMin<0>,PMax<1> > Base2SV; typedef GetDouble,PMin<0>,PMax<100> > Base2CMYK; typedef GetDouble,PMin<0>,PMax<100> > Base2Transp; typedef GetDouble,PMin<0>,PMax<255> > BaseM2RGB; typedef GetDouble,PMin<0>,PMax<360> > BaseM2Hue; typedef GetDouble,PMin<0>,PMax<1> > BaseM2SV; typedef GetDouble,PMin<0>,PMax<100> > BaseM2CMYK; typedef GetDouble,PMin<0>,PMax<100> > BaseM2Transp; // Converting List to GMTColor /* Input: 1) One argument, Color. Return copy of this argument. 2) One argument, list. Recursively calling GMT_Color. 3) Pairs list. Names are gray (grey), r(red),g(green),b(blue), h(hue),s(sat,saturation),v(value), c(cyan),m(magenta),y(yellow),k(black) and t(transp,transparency). The different color models can't be mixed. Gray, r, g, b are doubles in the range 0-255, h is double in the range 0-360, s and v are doubles in the range 0-1 and c, m, y, k and transparency are doubles in the range 0-100. Default value for all parameters is 0. If pair with name color exists in list, when recursively calling GMT_Color on the value of this parameter, when modify it with specified parameters. If argument with type Color exists in list, when copy it and modify with specified parameters. In both cases color model changing as specified by parameters. 4) One argument, interprets as gray. 5) Three arguments, interprets as r, g, b. 6) Four arguments, interprets as c, m, y, k. Transparency or HSV model can be set only in form 3. */ template<> class Convert2Struct { public: struct gmt_color operator()(const ObjectList* input, bool* issuc) const { struct gmt_color c; auto size=input->Size(); if(1==size) // Cases 1, 2 and 4 { Base2Color color(input,0); bool suc=true; c=color(&suc); if(!suc) goto fail; // Conversion failed return c; } // Case 3 { bool cmodset=false; bool upd; { SearchParameter updarg(input,"color"); bool suc=true; c=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments } if(!upd) { // default color is black c.transparency=0; c.model=gmt_color::GRAY; c.gray=0.0; } { BaseM2Transp t(input,"t","transp","transparency"); if(t.Exist()) { bool suc=true; c.transparency=t(&suc); if(!suc) goto fail; // Parsing error } } // GRAY { BaseM2RGB g(input,"gray","grey"); if(g.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.model=gmt_color::GRAY; c.gray=g(&suc); // Update mode ignored in this case if(!suc) goto fail; // Parsing error cmodset=true; } } // RGB { BaseM2RGB r(input,"r","red"), g(input,"g","green"), b(input,"b","blue"); if(r.Exist() || g.Exist() || b.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.ToRGB(); if(r.Exist()) c.r=r(&suc); if(g.Exist()) c.g=g(&suc); if(b.Exist()) c.b=b(&suc); if(!suc) goto fail; // Parsing error cmodset=true; } } // HSV { BaseM2Hue h(input,"h","hue"); BaseM2SV s(input,"s","sat","saturation"), v(input,"v","val","value"); if(h.Exist() || s.Exist() || v.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.ToHSV(); if(h.Exist()) c.hue=h(&suc); if(s.Exist()) c.saturation=s(&suc); if(v.Exist()) c.value=v(&suc); if(!suc) goto fail; // Parsing error cmodset=true; } } // CMYK { BaseM2CMYK cc(input,"c","cyan"), m(input,"m","magenta"), y(input,"y","yellow"), k(input,"k","black"); if(cc.Exist() || m.Exist() || y.Exist() || k.Exist()) { if(cmodset) goto fail; // Model already set bool suc=true; c.ToCMYK(); if(cc.Exist()) c.cyan=cc(&suc); if(m.Exist()) c.magenta=m(&suc); if(y.Exist()) c.yellow=y(&suc); if(k.Exist()) c.black=k(&suc); if(!suc) goto fail; // Parsing error cmodset=true; } } if(cmodset || upd) return c; // Color created or updated } // Case 5 if(3==size) { Base2RGB r(input,0), g(input,1), b(input,2); c.model=gmt_color::RGB; bool suc=true; if(r && g && b) { c.r=r(&suc); c.g=g(&suc); c.b=b(&suc); if(!suc) goto fail; // Parsing error } else goto fail; // Something wrong return c; } // Case 6 if(4==size) { Base2CMYK cc(input,0), m(input,1), y(input,2), k(input,3); c.model=gmt_color::CMYK; bool suc=true; if(cc && m && y && k) { c.cyan=cc(&suc); c.magenta=m(&suc); c.yellow=y(&suc); c.black=k(&suc); if(!suc) goto fail; // Parsing error } else goto fail; // Something wrong return c; } fail: *issuc=false; return c; // Something go wrong } }; // Helper types typedef GetDouble,PMin<0> > Base2Width; typedef GetDouble,PMin<0> > BaseM2Width; // Converting List to GMTPen /* Input: 1) One argument, Pen. Return copy of this argument. 2) One argument, list. Recursively calling GMT_Pen. 3) Pairs list. Names are width (w), color(c), dash(f). Default values is 1 for width, black for color and solid for dash. If pair with name pen(p) exists in list, when recursively calling GMT_Line on the value of this parameter, when modify it with specified parameters. If argument with type Pen exists in list, when copy it and modify with specified parameters. Instead of color and dash unnamed parameters with Color and Dash types may be used. 4) One argument, interprets as width of black solid line. 5) Two arguments, interprets as width and color of solid line. 6) Three arguments, interprets as width, color and dash. */ template<> class Convert2Struct { public: struct gmt_pen operator()(const ObjectList* input, bool* issuc) const { struct gmt_pen p; auto size=input->Size(); if(1==size) // Cases 1, 2 and 4 { Base2Pen pen(input,0); bool suc=true; p=pen(&suc); if(!suc) goto fail; // Conversion failed return p; } // Case 3 { bool casevalid=false; bool upd; { SearchParameter updarg(input,"pen","p"); bool suc=true; p=updarg(&upd,&suc); if(upd && !suc) goto fail; // Conversion failed or too many arguments } if(!upd) { // default pen is solid black 1mm width p.width=gmt_pen::default_width; p.color.Convert(0); p.dash.Clear(); } { BaseM2Width w(input,"w","width"); if(w.Exist()) { bool suc=true; p.width=w(&suc); if(!suc) goto fail; // Parsing error casevalid=true; } } // Color { SearchParameter color(input,"color","c"); if(color.Exist()) { bool suc=true; p.color=color(&suc); if(!suc) goto fail; // Parsing error casevalid=true; } } // Dash { SearchParameter dash(input,"dash","d"); if(dash.Exist()) { bool suc=true; p.dash=dash(&suc); if(!suc) goto fail; // Parsing error p.dash.width=p.width; casevalid=true; } } if(casevalid || upd) return p; // Pen created or updated } // Case 5 and 6 if(2==size || 3==size) { Base2Width w(input,0); Base2Color c(input,1); Base2Dash d(input,2); bool suc=true; if(w && c) { p.width=w(&suc); p.color=c(&suc); } else goto fail; // Something wrong if(d) p.dash=d(&suc,p.width); if(!suc) goto fail; // Something wrong return p; } fail: *issuc=false; return p; // Something go wrong } }; // Template for generating GMTObject from ObjectList template ObjectBase* GMT_Type(const ObjectList* input) { bool suc=true; Struct s=Convert2Struct()(input,&suc); if(suc) return new ObjectGMTClass(s); else return 0; } #endif